Sunday, November 16, 2008

History

Early development

The concept of digitizing images on scanners, and the concept of digitizing video signals, predate the concept of making still pictures by digitizing signals from an array of discrete sensor elements. Eugene F. Lally of the Jet Propulsion Laboratory published the first description of how to produce still photos in a digital domain using a mosaic photosensor. The purpose was to provide onboard navigation information to astronauts during missions to planets. The mosaic array periodically recorded still photos of star and planet locations during transit and when approaching a planet provided additional stadiametric information for orbiting and landing guidance. The concept included camera design elements foreshadowing the first digital camera.

Texas Instruments engineer Willis Adcock designed a filmless camera and applied for a patent in 1972, but it is not known whether it was ever built. The first recorded attempt at building a digital camera was in 1975 by Steven Sasson, an engineer at Eastman Kodak. It used the then-new solid-state CCD image sensor chips developed by Fairchild Semiconductor in 1973. The camera weighed 8 pounds (3.6 kg), recorded black and white images to a cassette tape, had a resolution of 0.01 megapixels (10,000 pixels), and took 23 seconds to capture its first image in December 1975. The prototype camera was a technical exercise, not intended for production.

Analog electronic cameras

Handheld electronic cameras, in the sense of a device meant to be carried and used like a handheld film camera, appeared in 1981 with the demonstration of the Sony Mavica (Magnetic Video Camera). This is not to be confused with the later cameras by Sony that also bore the Mavica name. This was an analog camera, in that it recorded pixel signals continuously, as videotape machines did, without converting them to discrete levels; it recorded television-like signals to a 2 × 2 inch "video floppy". In essence it was a video movie camera that recorded single frames, 50 per disk in field mode and 25 per disk in frame mode. The image quality was considered equal to that of then-current televisions.

Analog cameras do not appear to have reached the market until 1986 with the Canon RC-701. Canon demonstrated a prototype of this model at the 1984 Summer Olympics, printing the images in the Yomiuri Shimbun, a Japanese newspaper. In the United States, the first publication to use these cameras for real reportage was USA Today, in its coverage of World Series baseball. Several factors held back the widespread adoption of analog cameras; the cost (upwards of $20,000), poor image quality compared to film, and the lack of quality affordable printers. Capturing and printing an image originally required access to equipment such as a frame grabber, which was beyond the reach of the average consumer. The "video floppy" disks later had several reader devices available for viewing on a screen, but were never standardized as a computer drive.

The early adopters tended to be in the news media, where the cost was negated by the utility and the ability to transmit images by telephone lines. The poor image quality was offset by the low resolution of newspaper graphics. This capability to transmit images without a satellite link was useful during the Tiananmen Square protests of 1989 and the first Gulf War in 1991.

US government agencies also took a strong interest in the still video concept, notably the US Navy for use as a real time air-to-sea surveillance system.

The first analog camera marketed to consumers may have been the Canon RC-250 Xapshot in 1988. A notable analog camera produced the same year was the Nikon QV-1000C, designed as a press camera and not offered for sale to general users, which sold only a few hundred units. It recorded images in greyscale, and the quality in newspaper print was equal to film cameras. In appearance it closely resembled a modern digital single-lens reflex camera. Images were stored on video floppy disks.

The arrival of true digital cameras

The first true digital camera that recorded images as a computerized file was likely the Fuji DS-1P of 1988, which recorded to a 16 MB internal memory card that used a battery to keep the data in memory. This camera was never marketed in the United States, and has not been confirmed to have shipped even in Japan.

The first commercially available digital camera was the 1990 Dycam Model 1; it also sold as the Logitech Fotoman. It used a CCD image sensor, stored pictures digitally, and connected directly to a PC or Mac for download.

In 1991, Kodak brought to market the Kodak DCS-100, the beginning of a long line of professional SLR cameras by Kodak that were based in part on film bodies, often Nikons. It used a 1.3 megapixel sensor and was priced at $13,000.

The move to digital formats was helped by the formation of the first JPEG and MPEG standards in 1988, which allowed image and video files to be compressed for storage. The first consumer camera with a liquid crystal display on the back was the Casio QV-10 in 1995, and the first camera to use CompactFlash was the Kodak DC-25 in 1996.

The marketplace for consumer digital cameras was originally low resolution (either analog or digital) cameras built for utility. In 1997 the first megapixel cameras for consumers were marketed. The first camera that offered the ability to record video clips may have been the Ricoh RDC-1 in 1995.

1999 saw the introduction of the Nikon D1, a 2.74 megapixel camera that was the first digital SLR developed entirely by a major manufacturer, and at a cost of under $6,000 at introduction was affordable by professional photographers and high end consumers. This camera also used Nikon F-mount lenses, which meant film photographers could use many of the same lenses they already owned.

Also in 1999, Minolta introduced the RD-3000 D-SLR at 2.7 megapixels. This camera found many professional adherents. Limitations to the system included the need to use Vectis lenses which were designed for APS size film. The camera was sold with 5 lenses at various focal lengths and ranges (zoom). Minolta did not produce another D-SLR until September 2004 when they introduced the Alpha 7D (Alpha in Japan, Maxxum in North America, Dynax in the rest of the world) but using the Minolta A-mount system from its 35 mm line of cameras.

2003 saw the introduction of the Canon EOS 300D, also known as the Digital Rebel, a 6 megapixel camera and the first DSLR priced under $1,000, and marketed to consumers.

Image resolution

The resolution of a digital camera is often limited by the camera sensor (typically a CCD or CMOS sensor chip) that turns light into discrete signals, replacing the job of film in traditional photography. The sensor is made up of millions of "buckets" that essentially count the number of photons that strike the sensor. This means that the brighter the image at that point the larger of a value that is read for that pixel. Depending on the physical structure of the sensor a color filter array may be used which requires a demosaicing/interpolation algorithm. The number of resulting pixels in the image determines its "pixel count". For example, a 640x480 image would have 307,200 pixels, or approximately 307 kilopixels; a 3872x2592 image would have 10,036,224 pixels, or approximately 10 megapixels.

The pixel count alone is commonly presumed to indicate the resolution of a camera, but this is a misconception. There are several other factors that impact a sensor's resolution. Some of these factors include sensor size, lens quality, and the organization of the pixels (for example, a monochrome camera without a Bayer filter mosaic has a higher resolution than a typical color camera). Many digital compact cameras are criticized for having excessive pixels, in that the sensors can be so small that the resolution of the sensor is greater than the lens could possibly deliver. Australian recommended retail price of Kodak digital cameras.

As the technology has improved, costs have decreased dramatically. Measuring the "pixels per dollar" as a basic measure of value for a digital camera, there has been a continuous and steady increase in the number of pixels each dollar buys in a new camera consistent with the principles of Moore's Law. This predictability of camera prices was first presented in 1998 at the Australian PMA DIMA conference by Barry Hendy and since referred to as "Hendy's Law".

Since only a few aspect ratios are commonly used (especially 4:3 and 3:2), the number of sensor sizes that are useful is limited. Furthermore, sensor manufacturers don't manufacture every possible sensor size but take incremental steps in sizes. For example, in 2007 the three largest sensors (in terms of pixel count) used by Canon are the 21.1, 16.6, and 12.8 megapixel CMOS sensors. The following is a table of sensors commercially used in digital cameras.

No comments: